Advanced Math 9a-2 Arithmetic Sequences

Arithmetic Sequence- All the terms have a common difference, d.

Determine whether or not the sequence is arithmetic. (pg 726)
3) $1,2,4,8,16, \ldots$
9) $5.3,5.7,6.1,6.5,6.9, \ldots$
12
No!

Yes.
nth term of an Arithmetic Sequence:

$$
a_{n}=a_{1}+d(n-1)
$$

Write the first five terms of the sequence. Determine whether the sequence is arithmetic, and if it is, find the common difference.

$$
\text { 11) } \begin{array}{rl}
8 & 8+3(n-1) \\
a_{n} & =5+\ddot{3 n} n \\
a_{1} & =8 \\
a_{2} & =11 \\
a_{3} & =14 \\
a_{4} & =17 \\
a_{5} & =20
\end{array}
$$

seed
19) $a_{1}=15, a_{k+1}=a_{k}+\because \because \ddot{4} ;$
$a_{2}=19$
$a_{3}=23 \quad d .4 .:$
$a_{4}=27 \quad$ Recall:
$a_{5}=31 \quad \begin{aligned} & \text { Thesis a recursively } \\ & \text { defined sequence }\end{aligned}$
defined sequence.

This is a traditionally defined
sequence function.

Write the first five terms of the arithmetic sequence.

$$
\text { 31) } a_{8}=26, a_{12}=42
$$

Finish with the true
First, adjust like so: settiterm n adjust equation.

$$
\text { pretend } \rightarrow \quad \begin{aligned}
& a_{1}==26 \quad a_{5}=42 \\
& a_{n}=a_{1}+d(n-1) \quad 8-?=1 \\
& 42=26+d(5-1) \quad(12-7=n \\
& 16=4 d \\
& 16=d \quad \text { Then find the true } a_{1}: \\
& a_{n}=a_{1}+4(n-1) \\
& 26=a_{1}+4(8-1) \\
& 26=a_{1}+28 \\
&-2=a_{1}
\end{aligned}
$$

Find a formula for a_{n} for the arithmetic sequence.
43) $a_{3}=94, a_{6}=85$
pretend

$94=a,-3(3-1)$
$94=a,-6$
$100=9$

$$
-9=3 d
$$

$-3=d$
Then find the actual
is adjust.

Sum of an arithmetic sequence:

$$
S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

This is the history of how this formula came about. Notice the underlined terms add to 101.
Hence, $a_{l}+a_{n}$. Since we use two at a time, there are 50 pairs, or $n / 2$. They multiply to 5050 .

Find the sum of the first n terms of the arithmetic sequence.
55) $8,20,32,44 \quad n=10 \quad a_{n}=a_{1}+d(n-1)$

$$
\begin{array}{rlrl}
8,20,32,44, \ldots, n=10 & a_{10}=8+12(10-1) \\
a_{1}^{T} a_{2} & a_{10}=8+12(9)=116 \\
S_{10} & =\frac{10}{2}(8+116) & \\
& =5(124) \\
& =620
\end{array}
$$

Evaluate -
65)

$$
\begin{array}{rlrl}
\int_{n=1}^{100} 5 n & \Rightarrow a_{1}=5, a_{\mathbf{2}}=10, a_{\mathbf{3}}=15, \ldots, & a_{100}=500 \\
S_{100} & =\frac{100}{2}(5+500) & & \text { In this problem, } a_{100} \text { was } \\
& =50(505) & & \text { easy to find. If not easy, use } \\
& =25250 & &
\end{array}
$$

Assignment:
pg. 726
2-24 every th, 26-44 even, 56-78 even, 82.

